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Chaotic properties of the soft-disk Lorentz gas
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The traditional hard-disk Lorentz gas describes the chaotic motion of a classical point particle through an
array of impenetrable disks. Soft-disk modifications of the two-dimensional Lorentz gas, where the scattering
particle can move into the disk interiors, are considered here. Conditions on the soft-disk potentials and disk
separations that guarantee chaotic motion are obtained.
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[. INTRODUCTION must be maintained for the system to be case 2 chaotic. The
hard-disk Lorentz gas is a special limit of case 2 chaos. In
Lorentz [1] proposed a simple mod¢how often called this limit the minimum separation vanishes, as one expects.
the Lorentz gaksto investigate the Drude theory of electrical The demonstration of both types of chaos follows from two
conductivity in metals. Atoms in the metal were representedelatively simple recursion relations which will be derived in
as fixed hard spheres which specularly scattered the eleée following section.
trons. Intuitively, one expects elastic scattering from the
spherical atoms to quickly randomize the electron velocities. Il. RECURSION RELATIONS
Proofs that the electron motion really is randomized by a
lattice of scattering spheres are not easy. However, a numb
of exact result have been obtained for arrays of scattering
disks in two dimension§2-5], and more recent mathemati-
cal developments have been reviewed by Sim#6yi Re-
sults of these investigations reinforce our intuitive view of
the approach to equilibrium. The Lorentz gas is “chaotic,”
“ergodic,” and “mixing,” which means the motion is sen-

sitive to initial conditions, time average approach spatia A X , , ,
averages, and correlations decay in titsemetimes in an Each dlsk is characterized by its pgtenual energy fgnchon
anomalous manndf,g)). U;j(r) which depends only on the distancérom the disk

Because atoms are not really hard spheres, one would lig€nter- Each disk has a radiagwith U;(r)=0 for r>a;.
to know if more realistic scattering models are also chaotic,! "€ motion of the scattering particle is determined by clas-
ergodic, or mixing. The chaotic aspect of this question isSic@l mechanics and the total potential energy,
addressed here for “soft-disk” modifications of the two-
dimensional Lorentz gas. We know from earlier numerical V(N =2 U(Ir=Ry). )
work that motion in the plane is not always chaotic or er- J
godic. Simulations have shown that planar motion of a par- A path that enters disk is characterized by its incident
ticle in simple potentials is sometimes confined to specia(Lm

: . gle¢; and a signed impact parametgr(b; being positive
regions of p_hase Space, as charaz_:tenzed by the KAM the%r paths traversing the disk in a counterclockwise diregtion
rem[9]. Various aspects of potential scatteritwith appli-

. ; . . ) The same impact parameter characterizes the trajectory on
g?gggznarivmv';\'g:gttgfgrtgge' :ig'siigisgnggﬁ%d'Sk entering and leaving a disk. To simplify notation, disks along
g . 9 yb " . apath are labeled sequentially, even though some disks may
We will derive here two cases where soft-disk scatterlngOe visited more than once. After passing through gjskie
does lead to chaos in the sense that adjacent paths diverge .. it o A
exponentially with the number of scattering evetas ad- ggrtlcle moves along a straight “connecting line” of length

) R s; to diskj+1 in a directione. . ;. When the particle enters
It ” j j+1
mittedly weak characterlgatlon of “chaos”Case 1 chaos the next disk, it is characterized by a new impact parameter
occurs whenever each disk deflects the scattering path tQ-
ward the disk center, and the magnitude of the deflection’
Increases as th_e Impact parameter decreasgs_. A variety %fFigs. 1, 2, and 3. To simplify the notation in these figures,
attracting potentials with singularities at the origin, such as q . . o ‘1
) . : he disk radiia;, anda;, , are labeled 4” and “a’.” The
truncated attracting Coulomb potential, can satisfy the cons et araméterb- a]ndb- and the angless: and ¢
dition for case 1 chaos. Case 2 chaotic systems have a mor(;;ep simiFI)arI Iabele]d i+l gD i+l
complicated characterization. The scattering path must bd y '
deflected away from the disk center, and the deflection angle
must increase fairly rapidly as the impact parameter de-
creases. In addition, the disks may not touch, and there is a In Figure 1 the path enters the larger disk moving in a

minimum disk separatioidepending on the potentjathat  direction ¢» with an impact parametds, passes through the

. A “scattering” recursion relation gives the bending of the
article’s trajectory(as it moves through a digkn terms of

s impact parameter and the potential energy of the disk. The
“‘geometric” recursion relation gives the change of the par-
ticle’s impact parametefas it moves from disk to digkin
terms of the geometry of the trajectory and the disk separa-
tions. The array of disks encountered by the scattering par-

ticle (labeled by an index) are centered at positioréj.

+1-
Different aspects of one example path segment are shown

A. Scattering recursion relation
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FIG. 1. A portion of a pati{curve with large arrowheadf a FIG. 3. A condensation of information from Figs. 1 and 2. The
particle scattered by two attracting disks. The particle enters thélisk boundaries are not shown and the extended connecting line has
first disk with an incident directions and leaves the disk in the been displaced so that one end is at the smaller disk’s center. The
direction¢’. The disk radii are anda’. The impact parameters are angle between the two long legs of the resulting right triangle is
b andb’. The disk separation line is labeled with its lendgthand (¢’ —®) and the short side of the triangle has length-(").
its directiond. The connecting-line part of the path is labeled by its

lengths and its directiong’.

disk (the curve with a large arrowhepdnd leaves with the
same impact parametbrbut in a new directionp’. Because

the disk potential is isotropic, the difference between the
incident and scattered directions can only depend on the po-

tential U(r) and the impact parameteb. That means
(o' — ¢)=0(b), whered(b) is the “scattering function” for

the larger disk. The generalization of this equation to afvhere p=

arbitrary disk gives the scattering recursion relation,

1= ¢+ 0;(b)), (2
where(for each diskj) the scattering functiom;(b;) is de-
termined by the disk’s potenti&l;(r). The characteristics of
the scattering function@plus the disk separationdetermine

whether or not the system can be chaotic, and the conditioBy

)

FIG. 2. Additional characterizations of the path of Fig. 1, with

for chaos will be expressed in terms of dimensionless func-
tions f;(b;) which are defined in terms of the derivative of
the scattering function with respect to the impact parameter.
With the indexj suppressed,

f(b)= 70 3
(b)=p—p. )
Ja?—b? is half the distance the particle would
travel inside the disk if it were undeflected. This distance is
shown for the larger disk of Fig. 2. We consider potentials
sufficiently well behaved so thdt(b) is defined(except at
isolated points, such a@s=0).

B. Geometric recursion relation

Referring again to Fig. 1 we note that after being scattered
the larger disk, the particle moves along the straight
“connecting line” (labeled by its lengtls and direction¢'),
enters the smaller disk with an impact paraméterand then

is scattered by the smaller disk. Also shown in Fig. 1 is the
“disk separation line,” labeled by its length and its direc-
tion @.

In Fig. 2 only the connecting-line portion of the scattering
particle’s path is shown. Also shown in the larger disk of
Fig. 2 is a triangle with sidep andb and hypotenusa, so
p=+/a?—b?. A corresponding’ = \/(a')?>— (b’)? is defined
for the smaller disk, byp’ is not shown to avoid clutter. The
line labeled with lengthd in Fig. 2 denotes the length of an
“extended connecting line” whose end points are the per-
pendicular intersections with the impact parameter lihes
andb’. The length of the extended connecting linedis s
+p+p'.

In Fig. 3 the disk surfaces are not shown, but lines and

only the connecting-line portion of the path retained. The lines la-2ngles from Figs. 1 and 2 are used to illustrate the geometric
beled with the lengthp, a,b in the larger disk form a right triangle.  ecursion relation of Eq4). The extended connecting line of

A p’ is defined analogously for the smaller disk, but is not shown.lengthd in Fig. 3 has undergone a parallel displacement so
The line with lengthd=s+p+p’ gives the length of the extended that one end is at the center of the smaller disk. The length of
connecting line which terminates when it intersects the impact pathe line between the disk centers is the sum of the disk radii
rameter lines labeled andb’. (a+a’) plus the length of the disk separation lide The
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The matrices of Eq(6) determine whether or not the sys-
tem will be chaotic, and the properties of the disk potentials
appear only through the terifi} in these matrices. We con-
sider two cases where cha@eeaning the exponential sepa-
ration of adjacent paths caused by repeated scattering gvents
is assured for essentially all paths.

A. Case 1: Negativef

If the f; are negative for all values of the impact param-
etersb; , then the off-diagonal elements of eddh are nega-
o - . tive and the lower right element of eadh; is greater than
FIG. 4. Two infinitesimally differing paths, characterized by the unity. Taking 8¢, =0 anddb;>0 yields a lower bound on

angle differenced¢ and the impact parameter differenéd ap- e impact parameter difference aftériterations of the re-
proach the left-hand disk. For this example, the paths converge at@ursion relations

point a distancé. from the disk’s surface. Also shown are a second
disk and the shell thickness@sand A’ which enforce a minimum df

N
separation A+A’) between disks. Sbys=0b, [ [ (1— #) . €))
j=1 P

angle between the lined and @+a’'+A) is (¢'—®), as i i i i
can be seen from Fig. 1. The third side of the right triangle inON€ obtains this lower bound by ignoring the; produced

Fig. 3 has lengthlf—b’) and (b—b’) is perpendicular ta. after each matrix multiplication. Inclusion of th&p; can
Thus b—b’)=(a+A+a’)sin (¢' —®). This is the abbre- ONlYy increasesby ;. ,

viated version of the geometric recursion relation. With sub- 1 "€ lower bound of Eq(8) is path dependent. It depends
scripts restored, it reads on which disks scattered the particle as well as the impact

parameters along the path. We can use this lower bound to

bj 1=bj—(Aj+a;+aj.1)sin(¢j.1— D). (4)  establish a minimum separation between adjacent paths

which depends only on the disks along the path, and not the

The recursion relations of Eq$2) and (4) will be used to impact parameters. This alternative lower bound makes it
derive the two classes of chaos described in the followinglear that negativef; mean paths will continue diverging

section. from each other as long as the collisions persist. Using
dj>p;+A; andaj=p; [gee Eq(7) and Fig. 4 an alternative
IIl. CHAOS lower bound on thesb; is
A chaotic (or hyperbolig system is characterized by an N A,
exponential growth in the separation of nearly all adjacent oby 1= 5b1jHl 1+25) 1+ 7| |, 9)
= j

paths. Consider two paths that enter djswith infinitesi-

mally differing directionsd¢; and infinitesimally differing  \yhere
impact parametersb; (see Fig. 4 These paths arrive at disk

j+1 with a new angle differencé¢;,,; and a new impact Z=min[ —f(b)]. (10
parameter differencéb; . ;, given by b

B. Case 2:f>1 and a minimum separation

©)

5¢j+1) (5¢j)
=M,; ,
bj 1 QY This case is more complicated because there are two cri-
. . _ _ . . teria for chaos. First, one must hafse>1 for all disks. Sec-
WhereMj is the matrix obtained by !mganzmg the recursion ond, there is a lower bound on the disk separatiabeledA
relations of Eqs(2) and (4). Abbreviatingf;(b;) from Ed. 5 Figs. 1 and 2 As will be show below, this minimum

(3) by fj, distance can be maintained if each disk is surrounded by an
¢ impenetrable “shell” of thicknes#\; (see Fig. 4. The mini-
M. :(9(¢j+1,bj+1) _ 1 i’pi ) () ~mum separatiorfor shell thicknessdepends on the disk po-
! d(¢;.bj) —d; 1-dfj/p;)’ tentials, and it vanishes for an array of hard disks.

It is convenient to introduce new distanogswhich relate
where the differentiation gives dj=(A;+3 the impact parameter differences to the angle differences
+a;j1)cos(p; 1 —P;). One can see from the trigonometry of through
Fig. 3 that this is the sant that appears in Figs. 2 and 3, so

2
]

dj=sj+pj+pji1. (7 f

If a path passes througl disks, the linearized map is the Physically, a positivex; describes paths diverging from a
matrix productMy- - - M,M. point which is a distancé = (2x;+ p;[2—f;])/f; from the
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point of impact with spherg, as is illustrated in Fig. 4.
Expressing the linearized recursion relations in terms of the
X; gives two expressions equivalent to Eg). The first is

Opj+1=— od;. (12 A

2x]-
1+ —
Pj

Thus the condition for chaog d¢;.1|>|6¢;|) will be sat-
isfied if all thex;>0. The second expression is

X1 _ (i—l)
fren 0 PR

FIG. 5. An example periodic orbit which changes from stable to

1 2 2xj -1 class 2 chaotic as the disk separatibris increased.
12X\ 1= —|—pj| =~ 1| || 1+ —
f; f; pj
2
a b/r
(13 6(b)=—2 cos *(b/a)+2 Sdr,
rev1—=U(r)—[b/r]
Starting with a positivex,, the x; will be positive for all (29

j>0 provided the two conditions of case 2 ch&described ) ) )
in the following two equationsare satisfied. The first condi- Wherer. is the distance of closest approach. We consider
tion is power-law and truncated Coulomb potentials where simple

expressions for the scattering angles can be obtained.

fi>1. (14
A. Power-law potential
The second is The power-law potential is
2 ( 2 ) 1-(r/a)’, r<a
s>pil == 1| +pis1|l 7/ —1]. 15 _ '
] pj(fj Pj+1 fj+1 (15) U(I’)p— (20)

0, r=a,
Since s;=A, (see Fig. 1 this condition ons; will be  \here one must have> — 2 to avoid paths which fall to the
satisfied if each disk is surrounded with a shell of thicknessisik center. Physically, paths produced by this example also
A; given by describe the classical propagation of a light beam through an

2
A=ma>{p<b)(——1 . .
b f(b) The scattering function can be evaluated for the power-
law potential, giving

array of dielectric disks with indices of refraction(r)
) (16 =/

If disk shells are not allowed to overlap, as is shown in Fig.

4, the minimum space between the disks is -2p

: (21

which meand (b) is independent of the impact parameter
As with case 1, a lower bound on the growth of the scat-

tering angle difference can be obtained which is independent fo 2p 22)
of the impact parameters. Using the alternate form of the (p+2)°
linearized recursion relation€Egs. (12) and (13)], and the _
inequalitiesf;>1, a;=p;, ands;=A; one obtains This means case 1 chaos occurs for the power-law poten-
tial whenp is negative. The lower bound on the exponential
N _A* separation between adjacent paths is given by(Eg). with
|5¢N+1|>|5¢1|H 1+ ;D (18) Z=2p/(p+2). Case 2 chaos occursf>2 and the mini-
=1 ] mum disk separation is enforced by a shell thickness
IV. EXAMPLES Al 22 23

The scattering functiord(b) for a particle in a central P
potentialU(r) is obtained from basic mechanics. Using units
where the particle’s energy E=1 and its mass ig=1/2,
the particle has unit velocity and an angular momentum The periodic orbit shown in Fig. 5 illustrates case 2 chaos
(with respect to a disk centewhich is half the impact pa- for the power-law potential. Three identical disks with iden-

rameter. For this casesee[12]) tical power-law potentials are placed at the corners of an

B. Periodic orbit
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equilateral triangle with side &+A. The periodic orbit a2\2 24y
sketched in Fig. 5 can only occur whe4, so thef>1 ——\/—
condition for case 2 chaos is automatically satisfied. How- al” 33 Vity
ever, one must still consider the disk separation. Since the —2a

three disks, scattering angles, and distances are identical, the y<-4
stability of this system is determined by the eigenvalues of a
single matrixM [Eq. (6)]. The motion will be chaotic when
the modulus of one of the eigenvaluesMfis greater than

unity. This happens when the magnitude of the trackla$

2+’

is sufficient to assure case 2 chaos.

greater than 2. Using Eq21) with §=—2x/3 gives p D. Hard disks
=acogm(p—4)/(6p)], so The hard-disk Lorentz gas is a limit of case 2 chaos with
f=2. This value forf can be obtained from a geometric
2p 2a+A construction. It can also be obtained from e oo limit of
TiMI=2=| 5% acog mip=ayi6p]. 2¥  the power-law potential or they| - limit of the truncated

Coulomb potential. For hard disks, the recursion relations for

d¢; andx; [Egs.(12) and(13)] simplify to
The requirement that TM} < — 2 for instability means both i’ i LEd ] Pty

separationlarger A) and hardnesflargerp) are needed to
assure chaos. The criterion for instability of the path shown 8¢j 1=~
in Fig. 5 requires a smaller disk separation than is implied by
the shell thickness specified in E@3) because Eq(23) is
the more general condition for the instability of all paths.

A system with just one stable periodic orbit is not ergodic.
Thus one cannot assume ergodic behavior of a randomly Xj+1=§;+
distributed array of soft disks that satisfy the-1 condition
of case 2 chaos because a few of the disks may sit close
together and allow stable periodic orbits. In this hard disk limit, one is assured that an initial positive
Xo Will lead to positivex; for all j>0, with no lower bound
on the space between disks. An alternative and readable deri-
vation of expressions equivalent to E@®8) (obtained by
The truncated Coulomb potential is Sina) is given by Gaspard14]. A formal solution to Eq.

(28) can be written as a continued fraction.

2Xj
1+ 7} 8¢, (27)

]

X

—p;. (28
2Xj+pj Pi

C. Coulomb potential

y(alr—=1), r<a

u(r),= 0 r=a (25 E. Low density disk arrays

If the separations between disks are always larggbut
with the parametey giving the sign of the potentighttrac-  1cVe" infinite compared to the disk radd;, then it is con-
b Y gving 9 P venient to express the divergence of paths in terms of an

tion or repulsion as well as the potential strength. X .
The integral that gives the scattering angle for this Cou_approxmate Lyapunov exponeut For case 1, after a tim

lomb potential is tabulated13]. Differentiating the result Sb(t)~ Sb(0)exp(\t) (29)
with respect to the impact parameter gives '

where
_ y(1+ v/2) 26 N
(1+7y)(bla)?+ (y/2)? le IN(1+Z;A;/a))
A= lim N (30)
The negative condition means the system will be case 1 N—co > N
i=1

chaotic when—2<y<0. Wheny is in this range a lower
bound on the exponential growth rate, which is independent
of angles and impact parameters, is given by @gwith For case 2, the same approximate lower bound\fas ob-
tained, excepZ;— 1. For either case, a soft-disk version of
the Krylov conjecturé¢15] for the Lyapunov exponent can be
—yl(1+y/2), —1<y<O0 extracted from this approximate bound ®nAfter replacing
= a; with an average, Z; with an averageZ, andA; with a
~(A+yR)ly, —2<y<-1. “t]ypical” mean free pajtha/(na), wheren is the dJensity of
scattering sites and is a number on the order of unity, one
For case 2 chaos, tife>1 condition is satisfied ify>2 or  obtains a simplification of Eq30) consistent with the ob-
y<—4. A shell thickness servation that should be of ordefn In(n)| for smallin,
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1+ — (31)  surface. Furthermore, the particle leaves the disk moving in a

na’ direction nearly equivalent to the direction obtained for hard-

na Za scattering particle to nearly the same position on the disk
A= ;In .

isk scattering. Generally speaking, other attracting poten-
als do not have this property.

We have done extensive numerical tests on periodic disk
rays that are described by the recursion relations of Egs.
(2) and(4). In every case tested, systems that are either case
1 or case 2 chaotic also appear to be ergodic. Of course this
is not a proof of ergodicity.

The case 1 examples of chaos were realized using attract- W€ Speculate that qualitative results obtained here apply
ing potentials with singularities at the origin. This is not a More generally to real systems where the potentials do not
coincidence because a negathie generally associated with vanish in the |nter—_d|sk region. For example, the. observation

, . >, S . that weakly attracting truncated Coulomb potentials are class
an attracting potential. AJ(r) which is continuous, attract-

ing, and bounded will have a vanishing scattering angle for1 chaotic, while only relatively strong repelling Coulomb

b—0 and forb—a. Thus the scattering angle could not potentials can be C_Iass 2 chaotic,_ may be anpther reason why
decrease over the Whole range of impact parameters. Ho ihe .crystal channeling of energetic particles is much less ef-
/ . : - MO%active when the channeled particles are negative.
ever, a large class of potentials which are singular at the
origin, so the scattering angle is not a continuous function of
the impact parameter ds—0, can be found which satisfy
the f<O criterion. | am happy to acknowledge Professor Harry Frisch for his
The Coulomb potential with large negatigeapproaches encouragement and suggestions which changed the emphasis
the hard-disk result because the highly eccentric elliptic orbibf this work. | also wish to thank Dr. Marco Lenci and Dr.

produced by this strongly attracting potential returns theV.J. Donnay for useful suggestions.

We emphasize again, however, that a randomly distributeﬁ
array of disks for case 2 may not be chaotic or ergodic be-
cause a few stable periodic orbits may occur for disks tha&r
happen to sit in close proximity.
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