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Chaotic properties of the soft-disk Lorentz gas
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Physics Department, University at Albany, Albany, New York 12222

~Received 22 December 2000; published 24 May 2001!

The traditional hard-disk Lorentz gas describes the chaotic motion of a classical point particle through an
array of impenetrable disks. Soft-disk modifications of the two-dimensional Lorentz gas, where the scattering
particle can move into the disk interiors, are considered here. Conditions on the soft-disk potentials and disk
separations that guarantee chaotic motion are obtained.

DOI: 10.1103/PhysRevE.63.066216 PACS number~s!: 05.45.Ac, 05.20.Dd, 73.23.Ad
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I. INTRODUCTION

Lorentz @1# proposed a simple model~now often called
the Lorentz gas! to investigate the Drude theory of electric
conductivity in metals. Atoms in the metal were represen
as fixed hard spheres which specularly scattered the e
trons. Intuitively, one expects elastic scattering from
spherical atoms to quickly randomize the electron velocit
Proofs that the electron motion really is randomized by
lattice of scattering spheres are not easy. However, a num
of exact result have been obtained for arrays of scatte
disks in two dimensions@2–5#, and more recent mathemat
cal developments have been reviewed by Simanyi@6#. Re-
sults of these investigations reinforce our intuitive view
the approach to equilibrium. The Lorentz gas is ‘‘chaotic
‘‘ergodic,’’ and ‘‘mixing,’’ which means the motion is sen
sitive to initial conditions, time average approach spa
averages, and correlations decay in time~sometimes in an
anomalous manner@7,8#!.

Because atoms are not really hard spheres, one would
to know if more realistic scattering models are also chao
ergodic, or mixing. The chaotic aspect of this question
addressed here for ‘‘soft-disk’’ modifications of the tw
dimensional Lorentz gas. We know from earlier numeri
work that motion in the plane is not always chaotic or
godic. Simulations have shown that planar motion of a p
ticle in simple potentials is sometimes confined to spe
regions of phase space, as characterized by the KAM th
rem @9#. Various aspects of potential scattering~with appli-
cations! are reviewed by Ott@10#. A discussion of soft-disk
scattering with recent references is given by Donnay@11#.

We will derive here two cases where soft-disk scatter
does lead to chaos in the sense that adjacent paths div
exponentially with the number of scattering events~an ad-
mittedly weak characterization of ‘‘chaos’’!. Case 1 chaos
occurs whenever each disk deflects the scattering path
ward the disk center, and the magnitude of the deflec
increases as the impact parameter decreases. A varie
attracting potentials with singularities at the origin, such a
truncated attracting Coulomb potential, can satisfy the c
dition for case 1 chaos. Case 2 chaotic systems have a m
complicated characterization. The scattering path must
deflected away from the disk center, and the deflection an
must increase fairly rapidly as the impact parameter
creases. In addition, the disks may not touch, and there
minimum disk separation~depending on the potential! that
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must be maintained for the system to be case 2 chaotic.
hard-disk Lorentz gas is a special limit of case 2 chaos
this limit the minimum separation vanishes, as one expe
The demonstration of both types of chaos follows from tw
relatively simple recursion relations which will be derived
the following section.

II. RECURSION RELATIONS

A ‘‘scattering’’ recursion relation gives the bending of th
particle’s trajectory~as it moves through a disk! in terms of
its impact parameter and the potential energy of the disk.
‘‘geometric’’ recursion relation gives the change of the pa
ticle’s impact parameter~as it moves from disk to disk! in
terms of the geometry of the trajectory and the disk sepa
tions. The array of disks encountered by the scattering p
ticle ~labeled by an indexj ) are centered at positionsRW j .
Each disk is characterized by its potential energy funct
U j (r ) which depends only on the distancer from the disk
center. Each disk has a radiusaj with U j (r )50 for r .aj .
The motion of the scattering particle is determined by cl
sical mechanics and the total potential energy,

V~rW !5(
j

U j~ urW2RW j u!. ~1!

A path that enters diskj is characterized by its inciden
anglef j and a signed impact parameterbj (bj being positive
for paths traversing the disk in a counterclockwise directio!.
The same impact parameter characterizes the trajector
entering and leaving a disk. To simplify notation, disks alo
a path are labeled sequentially, even though some disks
be visited more than once. After passing through diskj, the
particle moves along a straight ‘‘connecting line’’ of leng
sj to disk j 11 in a directionf j 11. When the particle enters
the next disk, it is characterized by a new impact parame
bj 11.

Different aspects of one example path segment are sh
in Figs. 1, 2, and 3. To simplify the notation in these figure
the disk radiiaj and aj 11 are labeled ‘‘a’’ and ‘‘ a8.’’ The
impact parametersbj andbj 11 and the anglesf j andf j 11
are similarly labeled.

A. Scattering recursion relation

In Figure 1 the path enters the larger disk moving in
directionf with an impact parameterb, passes through the
©2001 The American Physical Society16-1
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J. C. KIMBALL PHYSICAL REVIEW E 63 066216
disk ~the curve with a large arrowhead!, and leaves with the
same impact parameterb but in a new directionf8. Because
the disk potential is isotropic, the difference between
incident and scattered directions can only depend on the
tential U(r ) and the impact parameterb. That means
(f82f)5u(b), whereu(b) is the ‘‘scattering function’’ for
the larger disk. The generalization of this equation to
arbitrary disk gives the scattering recursion relation,

f j 115f j1u j~bj !, ~2!

where~for each diskj ) the scattering functionu j (bj ) is de-
termined by the disk’s potentialU j (r ). The characteristics o
the scattering functions~plus the disk separations! determine
whether or not the system can be chaotic, and the cond

FIG. 1. A portion of a path~curve with large arrowhead! of a
particle scattered by two attracting disks. The particle enters
first disk with an incident directionf and leaves the disk in the
directionf8. The disk radii area anda8. The impact parameters ar
b andb8. The disk separation line is labeled with its lengthD and
its directionF. The connecting-line part of the path is labeled by
lengths and its directionf8.

FIG. 2. Additional characterizations of the path of Fig. 1, w
only the connecting-line portion of the path retained. The lines
beled with the lengthsr, a,b in the larger disk form a right triangle
A r8 is defined analogously for the smaller disk, but is not show
The line with lengthd5s1r1r8 gives the length of the extende
connecting line which terminates when it intersects the impact
rameter lines labeledb andb8.
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for chaos will be expressed in terms of dimensionless fu
tions f j (bj ) which are defined in terms of the derivative
the scattering function with respect to the impact parame
With the indexj suppressed,

f ~b!5r
]u

]b
, ~3!

where r5Aa22b2 is half the distance the particle woul
travel inside the disk if it were undeflected. This distance
shown for the larger disk of Fig. 2. We consider potenti
sufficiently well behaved so thatf (b) is defined~except at
isolated points, such asb50).

B. Geometric recursion relation

Referring again to Fig. 1 we note that after being scatte
by the larger disk, the particle moves along the strai
‘‘connecting line’’ ~labeled by its lengths and directionf8),
enters the smaller disk with an impact parameterb8, and then
is scattered by the smaller disk. Also shown in Fig. 1 is
‘‘disk separation line,’’ labeled by its lengthD and its direc-
tion F.

In Fig. 2 only the connecting-line portion of the scatterin
particle’s path is shown. Also shown in the larger disk
Fig. 2 is a triangle with sidesr andb and hypotenusea, so
r5Aa22b2. A correspondingr85A(a8)22(b8)2 is defined
for the smaller disk, butr8 is not shown to avoid clutter. The
line labeled with lengthd in Fig. 2 denotes the length of a
‘‘extended connecting line’’ whose end points are the p
pendicular intersections with the impact parameter lineb
and b8. The length of the extended connecting line isd5s
1r1r8.

In Fig. 3 the disk surfaces are not shown, but lines a
angles from Figs. 1 and 2 are used to illustrate the geome
recursion relation of Eq.~4!. The extended connecting line o
lengthd in Fig. 3 has undergone a parallel displacement
that one end is at the center of the smaller disk. The lengt
the line between the disk centers is the sum of the disk r
(a1a8) plus the length of the disk separation lineD. The

e

-

.

a-

FIG. 3. A condensation of information from Figs. 1 and 2. T
disk boundaries are not shown and the extended connecting line
been displaced so that one end is at the smaller disk’s center.
angle between the two long legs of the resulting right triangle
(f82F) and the short side of the triangle has length (b2b8).
6-2
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CHAOTIC PROPERTIES OF THE SOFT-DISK LORENTZ GAS PHYSICAL REVIEW E63 066216
angle between the linesd and (a1a81D) is (f82F), as
can be seen from Fig. 1. The third side of the right triangle
Fig. 3 has length (b2b8) and (b2b8) is perpendicular tod.
Thus (b2b8)5(a1D1a8)sin (f82F). This is the abbre-
viated version of the geometric recursion relation. With su
scripts restored, it reads

bj 115bj2~D j1aj1aj 11!sin~f j 112F j !. ~4!

The recursion relations of Eqs.~2! and ~4! will be used to
derive the two classes of chaos described in the follow
section.

III. CHAOS

A chaotic ~or hyperbolic! system is characterized by a
exponential growth in the separation of nearly all adjac
paths. Consider two paths that enter diskj with infinitesi-
mally differing directionsdf j and infinitesimally differing
impact parametersdbj ~see Fig. 4!. These paths arrive at dis
j 11 with a new angle differencedf j 11 and a new impact
parameter differencedbj 11, given by

S df j 11

dbj 11
D 5M j S df j

dbj
D , ~5!

whereM j is the matrix obtained by linearizing the recursio
relations of Eqs.~2! and ~4!. Abbreviating f j (bj ) from Eq.
~3! by f j ,

M j5
]~f j 11 ,bj 11!

]~f j ,bj !
5S 1 f j /r j

2dj 12dj f j /r j
D , ~6!

where the differentiation gives dj5(D j1aj
1aj 11)cos(fj112Fj). One can see from the trigonometry
Fig. 3 that this is the samedj that appears in Figs. 2 and 3, s

dj5sj1r j1r j 11 . ~7!

If a path passes throughN disks, the linearized map is th
matrix productMN•••M2M1.

FIG. 4. Two infinitesimally differing paths, characterized by t
angle differencedf and the impact parameter differencedb ap-
proach the left-hand disk. For this example, the paths converge
point a distanceL from the disk’s surface. Also shown are a seco
disk and the shell thicknessesA andA8 which enforce a minimum
separation (A1A8) between disks.
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The matrices of Eq.~6! determine whether or not the sys
tem will be chaotic, and the properties of the disk potenti
appear only through the termf j in these matrices. We con
sider two cases where chaos~meaning the exponential sepa
ration of adjacent paths caused by repeated scattering ev!
is assured for essentially all paths.

A. Case 1: Negativef

If the f j are negative for all values of the impact param
etersbj , then the off-diagonal elements of eachM j are nega-
tive and the lower right element of eachM j is greater than
unity. Takingdf150 anddb1.0 yields a lower bound on
the impact parameter difference afterN iterations of the re-
cursion relations,

dbN11>db1)
j 51

N S 12
dj f j

r j
D . ~8!

One obtains this lower bound by ignoring thedf j produced
after each matrix multiplication. Inclusion of thedf j can
only increasedbN11.

The lower bound of Eq.~8! is path dependent. It depend
on which disks scattered the particle as well as the imp
parameters along the path. We can use this lower boun
establish a minimum separation between adjacent p
which depends only on the disks along the path, and not
impact parameters. This alternative lower bound make
clear that negativef j mean paths will continue diverging
from each other as long as the collisions persist. Us
dj.r j1D j andaj>r j @see Eq.~7! and Fig. 2# an alternative
lower bound on thedbj is

dbN11>db1)
j 51

N S 11ZjF11
D j

aj
G D , ~9!

where

Z5min
b

@2 f ~b!#. ~10!

B. Case 2:fÌ1 and a minimum separation

This case is more complicated because there are two
teria for chaos. First, one must havef j.1 for all disks. Sec-
ond, there is a lower bound on the disk separation~labeledD
in Figs. 1 and 2!. As will be show below, this minimum
distance can be maintained if each disk is surrounded by
impenetrable ‘‘shell’’ of thicknessAj ~see Fig. 4!. The mini-
mum separation~or shell thickness! depends on the disk po
tentials, and it vanishes for an array of hard disks.

It is convenient to introduce new distancesxj which relate
the impact parameter differences to the angle differen
through

dbj52
2

f j
~xj1r j !df j . ~11!

Physically, a positivexj describes paths diverging from
point which is a distanceL5(2xj1r j@22 f j #)/ f j from the

t a
6-3
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J. C. KIMBALL PHYSICAL REVIEW E 63 066216
point of impact with spherej, as is illustrated in Fig. 4.
Expressing the linearized recursion relations in terms of
xj gives two expressions equivalent to Eq.~5!. The first is

df j 1152S 11
2xj

r j
D df j . ~12!

Thus the condition for chaos (udf j 11u.udf j u) will be sat-
isfied if all thexj.0. The second expression is

2xj 11

f j 11
5sj2r j 11S 2

f j 11
21D

1F2xj S 12
1

f j
D2r j S 2

f j
21D G S 11

2xj

r j
D 21

.

~13!

Starting with a positivex0, the xj will be positive for all
j .0 provided the two conditions of case 2 chaos~described
in the following two equations! are satisfied. The first condi
tion is

f j.1. ~14!

The second is

sj.r j S 2

f j
21D1r j 11S 2

f j 11
21D . ~15!

Since sj>D j ~see Fig. 1! this condition onsj will be
satisfied if each disk is surrounded with a shell of thickn
Aj given by

A5max
b

S r~b!S 2

f ~b!
21D D . ~16!

If disk shells are not allowed to overlap, as is shown in F
4, the minimum space between the disks is

D j* 5Aj1Aj 11 . ~17!

As with case 1, a lower bound on the growth of the sc
tering angle difference can be obtained which is independ
of the impact parameters. Using the alternate form of
linearized recursion relations@Eqs. ~12! and ~13!#, and the
inequalitiesf j.1, aj>r j , andsj>D j one obtains

udfN11u.udf1u)
j 51

N S 11FD j2D j*

aj
G D . ~18!

IV. EXAMPLES

The scattering functionu(b) for a particle in a centra
potentialU(r ) is obtained from basic mechanics. Using un
where the particle’s energy isE51 and its mass ism51/2,
the particle has unit velocity and an angular moment
~with respect to a disk center! which is half the impact pa-
rameter. For this case~see@12#!
06621
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u~b!522 cos21~b/a!12E
r c

a b/r 2

A12U~r !2@b/r #2
dr,

~19!

where r c is the distance of closest approach. We consi
power-law and truncated Coulomb potentials where sim
expressions for the scattering angles can be obtained.

A. Power-law potential

The power-law potential is

U~r !p5H 12~r /a!p, r ,a

0, r>a,
~20!

where one must havep.22 to avoid paths which fall to the
disk center. Physically, paths produced by this example a
describe the classical propagation of a light beam through
array of dielectric disks with indices of refractionn(r )
5(r /a)p/2.

The scattering function can be evaluated for the pow
law potential, giving

u~b!5
22p

p12
cos21S b

aD , ~21!

which meansf (b) is independent of the impact paramete

f 5
2p

~p12!
. ~22!

This means case 1 chaos occurs for the power-law po
tial whenp is negative. The lower bound on the exponent
separation between adjacent paths is given by Eq.~10! with
Z52p/(p12). Case 2 chaos occurs ifp.2 and the mini-
mum disk separation is enforced by a shell thickness

A5
2a

p
. ~23!

B. Periodic orbit

The periodic orbit shown in Fig. 5 illustrates case 2 cha
for the power-law potential. Three identical disks with ide
tical power-law potentials are placed at the corners of

FIG. 5. An example periodic orbit which changes from stable
class 2 chaotic as the disk separationD is increased.
6-4
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CHAOTIC PROPERTIES OF THE SOFT-DISK LORENTZ GAS PHYSICAL REVIEW E63 066216
equilateral triangle with side 2a1D. The periodic orbit
sketched in Fig. 5 can only occur whenp.4, so thef .1
condition for case 2 chaos is automatically satisfied. Ho
ever, one must still consider the disk separation. Since
three disks, scattering angles, and distances are identica
stability of this system is determined by the eigenvalues o
single matrixM @Eq. ~6!#. The motion will be chaotic when
the modulus of one of the eigenvalues ofM is greater than
unity. This happens when the magnitude of the trace ofM is
greater than 2. Using Eq.~21! with u522p/3 gives r
5a cos@p(p24)/(6p)#, so

Tr$M %522S 2p

p12D 2a1D

a cos@p~p24!/~6p!#
. ~24!

The requirement that Tr$M %,22 for instability means both
separation~largerD) and hardness~larger p) are needed to
assure chaos. The criterion for instability of the path sho
in Fig. 5 requires a smaller disk separation than is implied
the shell thickness specified in Eq.~23! because Eq.~23! is
the more general condition for the instability of all paths.

A system with just one stable periodic orbit is not ergod
Thus one cannot assume ergodic behavior of a rando
distributed array of soft disks that satisfy thef .1 condition
of case 2 chaos because a few of the disks may sit c
together and allow stable periodic orbits.

C. Coulomb potential

The truncated Coulomb potential is

U~r !g5H g~a/r 21!, r ,a

0, r>a
~25!

with the parameterg giving the sign of the potential~attrac-
tion or repulsion! as well as the potential strength.

The integral that gives the scattering angle for this C
lomb potential is tabulated@13#. Differentiating the result
with respect to the impact parameter gives

f ~b!5
g~11g/2!

~11g!~b/a!21~g/2!2
. ~26!

The negativef condition means the system will be case
chaotic when22,g,0. Wheng is in this range a lower
bound on the exponential growth rate, which is independ
of angles and impact parameters, is given by Eq.~9! with

Z5H 2g/~11g/2!, 21,g,0

2~11g/2!/g, 22,g,21.

For case 2 chaos, thef .1 condition is satisfied ifg.2 or
g,24. A shell thickness
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is sufficient to assure case 2 chaos.

D. Hard disks

The hard-disk Lorentz gas is a limit of case 2 chaos w
f 52. This value forf can be obtained from a geometr
construction. It can also be obtained from thep→` limit of
the power-law potential or theugu→` limit of the truncated
Coulomb potential. For hard disks, the recursion relations
df j andxj @Eqs.~12! and ~13!# simplify to

df j 1152F11
2xj

r j
Gdf j ~27!

and

xj 115sj1S xj

2xj1r j
D r j . ~28!

In this hard disk limit, one is assured that an initial positi
x0 will lead to positivexj for all j .0, with no lower bound
on the space between disks. An alternative and readable
vation of expressions equivalent to Eq.~28! ~obtained by
Sinai! is given by Gaspard@14#. A formal solution to Eq.
~28! can be written as a continued fraction.

E. Low density disk arrays

If the separations between disksD j are always large~but
never infinite! compared to the disk radiiaj , then it is con-
venient to express the divergence of paths in terms of
approximate Lyapunov exponentl. For case 1, after a timet,

db~ t !'db~0!exp~lt !, ~29!

where

l* lim
N→`

(
j 51

N

ln~11ZjD j /aj !

(
j 51

N

D j

. ~30!

For case 2, the same approximate lower bound forl is ob-
tained, exceptZj→1. For either case, a soft-disk version
the Krylov conjecture@15# for the Lyapunov exponent can b
extracted from this approximate bound onl. After replacing
aj with an averagea, Zj with an averageZ, andD j with a
‘‘typical’’ mean free patha/(na), wheren is the density of
scattering sites anda is a number on the order of unity, on
obtains a simplification of Eq.~30! consistent with the ob-
servation thatl should be of orderun ln(n)u for small n,
6-5
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l*
na

a
lnS 11

Za

na2D . ~31!

We emphasize again, however, that a randomly distribu
array of disks for case 2 may not be chaotic or ergodic
cause a few stable periodic orbits may occur for disks t
happen to sit in close proximity.

V. COMMENTS

The case 1 examples of chaos were realized using att
ing potentials with singularities at the origin. This is not
coincidence because a negativef is generally associated wit
an attracting potential. AU(rW) which is continuous, attract
ing, and bounded will have a vanishing scattering angle
b→0 and for b→a. Thus the scattering angle could n
decrease over the whole range of impact parameters. H
ever, a large class of potentials which are singular at
origin, so the scattering angle is not a continuous function
the impact parameter asb→0, can be found which satisfy
the f ,0 criterion.

The Coulomb potential with large negativeg approaches
the hard-disk result because the highly eccentric elliptic o
produced by this strongly attracting potential returns
,

t
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scattering particle to nearly the same position on the d
surface. Furthermore, the particle leaves the disk moving
direction nearly equivalent to the direction obtained for ha
disk scattering. Generally speaking, other attracting po
tials do not have this property.

We have done extensive numerical tests on periodic d
arrays that are described by the recursion relations of E
~2! and~4!. In every case tested, systems that are either c
1 or case 2 chaotic also appear to be ergodic. Of course
is not a proof of ergodicity.

We speculate that qualitative results obtained here ap
more generally to real systems where the potentials do
vanish in the inter-disk region. For example, the observa
that weakly attracting truncated Coulomb potentials are c
1 chaotic, while only relatively strong repelling Coulom
potentials can be Class 2 chaotic, may be another reason
the crystal channeling of energetic particles is much less
fective when the channeled particles are negative.
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